日本最新精品视频在线播放,少妇高潮太爽了在线视频,91精品国产91热久久久久福利,91蜜桃国产成人精品区在线,狼人综合干日韩欧美,一区二区日本免费中文字幕精品,一区二区无码中文

Faculty

中文       Go Back       Search
MA Ziming
Associate Professor

My research interest lies in the fields of Complex Geometry, Symplectic Geometry, Mathematical Physics, with special emphasis on Mirror Symmetry, which is a mysterious duality between symplectic geometry (A-model) of a Calabi-Yau manifold X and complex geometry (B-model) of its mirror Calabi-Yau manifold Xˇ. The focus of my current research is to unveil mysteries in Mirror Symmetry with viewpoint from the Strominger-Yau-Zaslow proposal.


Publications

11. Tropical Lagrangian multi-sections and smoothing of locally free sheaves on degenerated Calabi-Yau surfaces, (with K. W. Chan and Y. H. Suen) submitted. 

10. Smoothing Pairs Over Degenerate Calabi–Yau Varieties (with K. W. Chan), International Mathematics Research Notices , rnaa212, 2020, https://doi.org/10.1093/imrn/rnaa212 .

9. Geometry of Maurer-Cartan equation near degenerate Calabi-Yaus (with K. W. Chan And N. C. Leung), accepted for publication in Journal of Differential Geometry.

8. Fukaya's conjecture on $S^1$-equivariant de Rham complex, submitted.

7. Fukaya's conjecture on Witten's twisted A_\infty structures, with Kaileung Chan and Naichung Conan Leung, J. Differential Geom. 118(3): 399-455 (July 2021). DOI: 10.4310/jdg/1625860622 . 

6. Scattering diagram from asymptotic analysis on Maurer-Cartan equations, with Kwokwai Chan and Naichung Conan Leung, Journal of the European Mathematical Society, 2021, DOI: 10.4171/JEMS/1100. 

5. Tropical counting from asymptotic analysis on Maurer-Cartan equations, with Kwokwai Chan, Transactions of the American Mathematical Society, 2020, https://doi.org/10.1090/tran/8128. 

4. Theta functions from asymptotic analysis on Maurer-Cartan equations, with Matthew Bruce Young and Naichung Conan Leung, International Mathematics Research Notices, rnz220, 2019, https://doi.org/10.1093/imrn/rnz220. 

3. SYZ mirror symmetry from Witten-Morse theory, to be appeared in CMA proceedings. 

2. Lattice points counting via Einstein metrics, with Naichung Conan Leung, Journal of Differential geometry 92 (2012), no. 1, 55-69.

1. Flat branes on tori and Fourier transform in the SYZ programme, with Kaileung Chan and Naichung Conan Leung, Proceedings of the G"okova Geometry-Topology Conference (2011), page 1-31, International press.


沁水县| 通辽市| 陵川县| 商洛市| 溧阳市| 定西市| 汤阴县| 吴江市| 麻江县| 屏边| 盐亭县| 固原市| 沐川县| 朝阳县| 民勤县| 托里县| 宁波市| 辽宁省| 沧源| 林州市| 秦皇岛市| 潞西市| 霸州市| 海林市| 博白县| 潜山县| 滦南县| 周至县| 莎车县| 克东县| 海林市| 松原市| 梅州市| 海原县| 阿克陶县| 淮滨县| 玉门市| 新郑市| 临泽县| 郴州市| 都江堰市|