日本最新精品视频在线播放,少妇高潮太爽了在线视频,91精品国产91热久久久久福利,91蜜桃国产成人精品区在线,狼人综合干日韩欧美,一区二区日本免费中文字幕精品,一区二区无码中文

Faculty

中文       Go Back       Search
ZhongRui Wang
Associate Professor

Dr. Zhongrui Wang is a tenured associate professor at the School of Microelectronics at Southern University of Science and Technology, a awardee of the NSFC Excellent Youth Fund (Hong Kong and Macau), and a Clarivate Highly Cited Researcher. Prior to joining SUSTech, he was an assistant professor in the Department of Electrical and Electronic Engineering at the University of Hong Kong. He earned his Bachelor's degree (First Class Honors) and Ph.D. from Nanyang Technological University in Singapore.

Dr. Wang's research primarily focuses on machine learning and neuromorphic computing based on novel computing-in-memory architectures. He has published papers as a corresponding or first author in journals such as Nature Reviews Materials, Nature Materials, Nature Electronics (4 papers), and Nature Machine Intelligence (2 papers), as well as conferences like DAC, ICCAD, and ICCV. His work has received nearly 16,000 citations on Google Scholar (h-index of 41) and has been featured in over 40 news outlets, including IEEE Spectrum, Scientific American, Science Daily, Phys.org, and ACM Communications.

Dr. Wang is a member of the IEEE Electron Devices Society's Nanotechnology Committee and serves on the editorial boards of journals such as InfoMat, Materials Today Electronics, Frontiers in Neuroscience, and APL Machine Learning.

Email: [email protected]. For more information, please visit https://zhongruiwang.github.io/.

 

Education

2014, Ph.D., Nanyang Technological University, Singapore

2009, Bachelor's Degree (First Class Honors), Nanyang Technological University, Singapore

 

Work Experience

2024–Present, Tenured Associate Professor, Southern University of Science and Technology

2020–2024, Assistant Professor, University of Hong Kong

2014–2020, Postdoctoral Researcher, University of Massachusetts Amherst

 

Research Interests

(Students with a background in machine learning, computer architecture, digital design, or physics/statistics are welcome to apply)

· Computing-in-memory architecture

· Hardware-software co-design based on emerging computing-in-memory architectures

· AI4S

 

Papers
(Google Scholar:https://scholar.google.com/citations?user=Ofl3nUsAAAAJ)

(ResearchGate: https://www.researchgate.net/profile/Zhongrui-Wang-2)

Recent representative works

1. S. Wang?, Y. Li?, D. Wang, W. Zhang, X. Chen, D. Dong, S. Wang, X. Zhang, P. Lin, C. Gallicchio, X. Xu, Q. Liu, K.-T. Cheng, Z. Wang*, D. Shang*, M. Liu, Echo state graph Neural Networks with Analogue Random Resistor Arrays, Nature Machine Intelligence, 5, 104 (2023) [Main corresponding author]

2. Y. Zhang?, W. Zhang?, S. Wang, N. Lin, Y. Yu, Y. He, B. Wang, H. Jiang, P. Lin, X. Xu, X. Qi, Z. Wang*, X. Zhang*, D. Shang*, Q. Liu, K.-T. Cheng, M. Liu, Dynamic neural network with memristive CIM and CAM for 2D and 3D vision, Science Advances, 10, eado1058 (2024) [Main corresponding author]

3. S. Wang?, X. Chen?(?equally contributed), C. Zhao, Y. Kong, B. Lin, Y. Wu, Z. Bi, Z. Xuan, T. Li, Y. Li, W. Zhang, E. Ma, Z. Wang*, W. Ma*, Molecular-scale integration of multi-modal sensing and neuromorphic computing with organic electrochemical transistors, Nature Electronics, 6, 281 (2023) [Co-corresponding author]

4. J. Yang?, H. Chen?, J. Chen?*, S. Wang, S. Wang, Y. Yu, X. Chen, B. Wang, X. Zhang, B. Cui, Y. Li, N. Lin, M. Xu, Y. Li, X. Xu, X. Qi, Z. Wang*, X. Zhang*, D. Shang*, H. Wang, Q. Liu, K.-T. Cheng, M. Liu, Resistive memory-based neural differential equation solver for score-based diffusion model, ArXiv: 2404.05648 https://arxiv.org/abs/2404.05648 [Main corresponding author]

5. Y. Yu, S. Wang, W. Zhang, X. Zhang, X. Wu, Y. He, J. Yang, Y. Zhang, N. Lin, B. Wang, X. Chen, S. Wang, X. Zhang, X. Qi, Z. Wang*, D. Shang*, Q. Liu*, K.-T. Cheng, M. Liu, Efficient and accurate neural field reconstruction using resistive memory, ArXiv: 2404.09613 https://arxiv.org/abs/2404.09613 [Main corresponding author]

6. N. Lin?, S. Wang?, Y. Li?, B. Wang, S. Shi, Y. He, W. Zhang, Y. Yu, Y. Zhang, X. Qi, X. Chen, H. Jiang, X. Zhang, P. Lin, X. Xu, Q. Liu, Z. Wang*, D. Shang*, M. Liu, Resistive memory-based zero-shot liquid state machine for multimodal event data learning, ArXiv: 2307.00771 https://arxiv.org/abs/2307.00771 [Main corresponding author]

7. M. Xu, S. Wang, Y. He, Y. Li, W. Zhang, M. Yang, X. Qi, Z. Wang*, M. Xu*, D. Shang*, Q. Liu, X. Miao, M. Liu, ResearchSquare: 3967300 https://doi.org/10.21203/rs.3.rs-3967300/v1 [Main corresponding author]


Other representative works

1. Z. Wang, H. Wu, G. W. Burr, C. S. Hwang, K. L. Wang, Q. Xia*, and J. J. Yang*, Resistive Switching Materials for Computing, Nature Review Materials, 5, 173-195 (2020) [First author]

2. Z. Wang?, C. Li?, P. Lin?, M. Rao, Y. Nie, W. Song, Q. Qiu, Y. Li, P. Yan, J. P. Strachan, N. Ge, N. McDonald, Q. Wu, M. Hu, H. Wu, R. S. Williams, Q. Xia*, and J. J. Yang*, In situ training of feedforward and recurrent convolutional memristor networks, Nature Machine Intelligence, 1, 434-442 (2019) [First author]

3. Z. Wang?, C. Li?, W. Song, M. Rao, D. Belkin, Y. Li, P. Yan, H. Jiang, P. Lin, M. Hu, J. P. Strachan, N. Ge, M. Barnell, Q. Wu, A. G. Barto, Q. Qiu, R. S. Williams, Q. Xia*, and J. J. Yang*, Reinforcement learning with analogue memristor arrays, Nature Electronics, 2, 115-124 (2019) [First author]

4. Z. Wang? , S. Joshi?(?equally contributed), S. Saveliev, W. Song, R. Midya, M. Rao, Y. Li, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K. Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu, R. S. Williams*, Q. Xia*, and J. J. Yang*, Fully memristive neural networks for pattern classification with unsupervised learning, Nature Electronics, 1, 137-145 (2018) [First author]

5. Z. Wang?, S. Joshi?(?equally contributed), S. E Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H. L Xin, R. S. Williams, Q. Xia, and J. J. Yang*, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nature Materials, 16, 101-108 (2017) [First author]


高陵县| 普定县| 汽车| 平昌县| 景洪市| 奉贤区| 思茅市| 从江县| 延安市| 甘泉县| 保定市| 青州市| 买车| 沙河市| 上栗县| 宁远县| 西宁市| 昌平区| 信丰县| 隆德县| 东台市| 富源县| 衡阳县| 延安市| 眉山市| 文水县| 云浮市| 措勤县| 尼玛县| 崇文区| 贵溪市| 浠水县| 嘉义县| 灵寿县| 海宁市| 邯郸县| 武功县| 乐都县| 平舆县| 曲水县| 沽源县|